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BiCrowd: Online Bi-Objective Incentive Mechanism
for Mobile Crowd Sensing

Yifan Zhang, Xinglin Zhang, and Feng Li

Abstract—With the rapid development of wireless networks
and mobile devices, mobile crowd sensing (MCS) has enabled
many smart city applications, which are key components in the
Internet of Things. In an MCS system, the sufficient participation
of mobile workers plays a significant role in the quality of sensing
services. Therefore, researchers have studied various incentive
mechanisms to motivate mobile workers in the literature. The
existing works mostly focus on optimizing one objective function
when selecting workers. However, some sensing tasks are asso-
ciated with more than one objective inherently. This motivates
us to investigate bi-objective incentive mechanisms in this work.
Specifically, we consider the scenario where the MCS system
selects workers by optimizing the completion reliability and
spatial diversity of sensing tasks. We first formulate the incentive
model with two optimization goals, and then design two online
incentive mechanisms based on the reverse auction. We prove that
the proposed mechanisms possess desirable properties, including
computational efficiency, individual rationality, budget feasibility,
truthfulness, and constant competitiveness. The experimental
results indicate that the proposed incentive mechanisms can
effectively optimize the two objectives simultaneously.

Index Terms—Mobile crowd sensing, online incentive mecha-
nism, bi-objective optimization, worker selection.

I. INTRODUCTION

Mobile crowd sensing (MCS) has become a promising
sensing paradigm that can harness the potential of numerous
mobile workers to perform location-based tasks thanks to the
development of wireless networks and mobile devices [1].
Examples of these tasks include urban traffic information
mapping [2], visual summarization of objects [3], object
tracking [4], and environment monitoring [5]. With the recent
advances of embedded sensors in mobile devices and IoT
technologies, MCS is expected to provide more novel spatial-
temporal sensing applications for smart cities and facilitate
our lives. However, many challenges remain to be addressed
before MCS systems can be fully deployed and embraced.

One of the key challenges for MCS systems is the incen-
tive mechanism design because sufficient participation lays
the foundation of high-quality sensing services. As workers
consume various resources, such as battery power and data
transmission cost, and endure the risk of privacy leakage
when participating in completing sensing tasks, it is essential
to provide them with sufficient rewards through an effective
incentive mechanism. Therefore, a large number of incentive
mechanisms have been investigated in the literature. These
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works mostly evaluate the potential of a worker by designing
a system objective function and then propose an incentive
mechanism to satisfy expected properties.

However, in some MCS scenarios, the sensing tasks possess
more than one optimization goal in nature considering the
assignment results. For example, for the task of taking photos
of a landmark, the task requester is interested in not only
collecting the correct photos of the landmark but also obtaining
a full view of the landmark from diverse directions. Therefore,
in this work, we consider modeling a new incentive framework
termed BiCrowd for such sensing applications with two opti-
mization goals: (i) Maximizing the reliability of completing
sensing tasks. We would like to encourage workers to be
responsible for their historical behavior in performing tasks.
Specifically, we design a rating and reliability mechanism,
in which the requester can rate each worker based on the
submitted result. Each rating score the worker gets is recorded
and used to calculate the worker’s reliability, which affects his
probability of being selected in the future. Based on this relia-
bility scheme, we can model the completion reliability of each
task, pursuing that the task can be completed successfully. (ii)
Maximizing the spatial diversity of selected workers. For MCS
tasks such as taking photos of a landmark, the spatial property
of the worker has a great influence on the comprehensiveness
of the collected photos. Intuitively, workers scattered around
the task can report data with different perspectives. Therefore,
we also model the spatial diversities of selected workers so
that the sensed data can capture the diverse features of the
task.

In addition to the optimization model with two objec-
tives, BiCrowd considers the online arrival of workers and
is designed based on the online reverse auction, which has
been shown to be effective in designing incentive mechanisms
with a single objective function [6], [7]. The challenge here
is that, as there are two optimization goals in BiCrowd,
the mechanism needs to optimize them simultaneously when
evaluating the candidate workers and at the same time ensure
the desirable properties of an effective incentive mechanism,
including computational efficiency, individual rationality, bud-
get feasibility, truthfulness, and constant competitiveness.

To accommodate these issues, we propose two online incen-
tive mechanisms termed EpIM and EaIM. EpIM assumes that
workers have moderate behaviors and they would like to max-
imize their expected utility, while EaIM assumes that workers
are ambitious and they would try to maximize their possible
utility. The main idea behind these two online mechanisms is
that, at each time step, we flip a coin with a given probability
λ ∈ [0, 1] to select the function of completion reliability as
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Fig. 1. The interaction flow of BiCrowd.

the evaluation function for the workers; At the same time,
naturally, we have the probability (1−λ) to select the function
of spatial diversity to evaluate the workers at the current
time step. After determining the evaluation function, we select
the worker for one task only when the budget has not been
exhausted and his marginal density is larger than or equal to a
certain density threshold. We calculate this density threshold
in a way that retains the expected performance properties of
the mechanism.

To summarize, the main contributions of this paper are as
follows:
• We propose an online bi-objective incentive framework

named BiCrowd, which aims to address the incentive
issues for MCS systems with two optimization goals and
online arriving workers. To the best of our knowledge,
this is the first work that considers bi-objective optimiza-
tion in designing incentive mechanisms for MCS.

• We design two online incentive mechanisms under Bi-
Crowd by considering two kinds of worker behaviors
in submitting bidding prices, and we theoretically prove
that the proposed incentive mechanisms possess many
desirable properties, including computational efficiency,
individual rationality, budget feasibility, truthfulness, and
constant competitiveness.

• Extensive experimental results based on both synthetic
and real-world datasets show that the proposed incen-
tive mechanisms achieve more competitive and balanced
results with respect to the two optimization functions
simultaneously.

The remainder of this paper is organized as follows: Sec-
tion II presents the related work. In Section III, we describe
the system model of BiCrowd, and formulate the bi-objective
optimization problem. We then present the two online mecha-
nisms, EpIM and EaIM, in Section IV and Section V, respec-
tively. In Section VI, we present the experiments. Finally, we
conclude this work in Section VII.

II. RELATED WORK

Researchers have devoted a lot of efforts to developing
various incentive mechanisms for MCS systems [6], [7].

Considering incentive mechanisms based on reverse auction,
Zhao et al. [8] design auctions under the scene that workers
are dynamically arriving. Zhang et al. [9] design a truthful
incentive mechanism based on auctions against false-name
attacks with some countermeasures. Aiming at the problem
of minimizing the social cost in mobile crowdsourcing, Li et
al. [10] propose a combined random auction mechanism. Cui
et al. [11] propose a truthful combinatorial auction mechanism
to tackle the problem of task allocation in crowdsourcing and
maximize the requester’s profit. Zhu et al. [12] design an
incentive mechanism combining reverse auction and Vickvey
auction to enhance the fairness of the bidding process. Xu et
al. [13] balance the utility property and the truthful bidding
property by designing a hybrid mechanism. Zhang et al. [14]
consider the heterogeneous sensing costs in different regions of
interest and propose corresponding incentive mechanisms. Liu
et al. [15] propose an incentive mechanism consisting of two
stages based on the reverse auction model for mobile crowd
sensing. Ji et al. [16] use the reverse auction model to design
a mechanism for mobile crowdsensing, reducing the system
maintenance cost maximally. These works are related to this
paper in that they mostly adopt auction models. However, they
only apply for the specific scenario with a single optimization
goal. In this work, we accommodate the situation where the
system is associated with multiple objective functions for
optimization.

The rating and reputation protocols are incorporated when
designing incentive mechanisms recently. Xie and Lui [17]
propose an incentive and rating mechanism for crowdsourc-
ing systems to incentivize workers to provide high-quality
contributions. Wu et al. [18] propose a worker selection
scheme, where the workers are evaluated according to the
task completion status. Hong et al. [19] reward workers
according to the quality of their sensing data and then propose
incentive mechanisms containing a “rating system” and a
“task bundling scheme”. Xie et al. [20] propose an incentive
mechanism that encourages the requester to rate the quality
of submitted sensing data and then rewards workers based on
this rating. These works mostly focus on the rating system.
Another direction is to design reputation protocols. Zhang and
Schaar [21] design incentive protocols based on reputation
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mechanisms in crowdsourcing. Lu et al. [22] design a novel
rating protocol combining the reputation mechanism and the
pricing mechanism for applications of crowdsensing. In this
work, we incorporate both rating and reliability protocols to
evaluate the quality of task completion and resist workers with
poor performance.

There are also some research works studying multi-objective
optimization in MCS. Cheng et al. [23] consider the worker’s
direction and speed of movement and then propose effective
mechanisms to assign spatial tasks to workers, maximizing
both the completion reliability and the spatial/temporal diversi-
ty of tasks. Zhang et al. [24] propose a task assignment model
with hybrid sensing tasks and design a heuristic algorithm to
maximize both task completion and sensing coverage. Wang
et al. [25] formally define the heterogeneous spatial crowd-
sourcing task allocation problem, which has two optimization
goals: maximizing the task coverage and minimizing the in-
centive cost. Zhang et al. [26] accommodate two optimization
objectives in vehicle-based crowdsensing and propose a greedy
heuristic algorithm and a genetic algorithm to efficiently solve
the problem. The aforementioned works only focus on task
assignment. In this work, we focus on designing incentive
mechanisms with desirable properties, and at the same time,
the tasks are assigned to the most suitable workers.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first illustrate the basic system model of
BiCrowd and demonstrate the rating and reliability mechanism
for evaluating workers. Then, we formulate the online bi-
objective optimization problem considering the completion
reliability and spatial diversity of sensing tasks. Finally, we
introduce the desirable properties of an incentive mechanism.

A. System Model

BiCrowd consists of a platform, task requesters and mobile
workers. The platform resides in the cloud, and it collects
and organizes sensing tasks from requesters. Specifically, the
platform publicizes an MCS campaign which aims to recruit
workers to complete a set of sensing tasks T = {t1, t2, ..., tm}
before a given deadline D under the budget B. A task tj ∈ T
is associated with a specific location and two optimization
goals, i.e., the task completion reliability and spatial diversity.
The task completion reliability represents the probability that
at least one high-quality result will be submitted to the
requester. The spatial diversity indicates whether the results
come from diverse spatial perspectives. We assume that a
group of mobile workers W = {1, 2, ..., n} interested in
performing sensing tasks arrive in a random order, where n is
unknown. Each worker i has an initial location li and a cost
ci for performing a sensing task.

We model the interactions between the platform and workers
as an online reverse auction. The workers act as the sellers to
send bidding prices to the platform for completing one sensing
task, and the platform acts as the buyer to select the valuable
workers to complete sensing tasks. Fig. 1 sketches the online
reverse auction between the platform and workers. Note that
in the auction process, we have also incorporated a feedback

component between the platform and requesters in order to
pursue a high long-term system utility.

In the auction process, the platform first publicizes an MCS
campaign containing the information of sensing tasks. Each
worker i ∈ W arriving online submits a bidding price bi to the
platform for performing a sensing task tj ∈ T . The platform
needs to make an irrevocable decision upon receiving worker
i’s bid based on the evaluation with respect to the system
optimization goals. If worker i is selected and assigned to
a task, the platform needs to determine the payment pi for
worker i. Worker i performs the assigned task and submits
the result, which will be rated by the requester. The platform
then updates the reliability of worker i based on the rating
from the requester.

We assume that workers are game-theoretic and tend to ma-
nipulate their bidding prices so as to maximize their received
payments. When interacting with the platform, the true cost ci
of worker i is only known to himself, and the utility of worker
i is thus defined as:

ui =

{
pi − ci, i ∈ S,
0, otherwise,

where S is the set of workers who are selected.

B. Rating and Reliability Mechanism

In order to achieve a good quality of service of BiCrowd in
the long term, we design a rating and reliability mechanism,
in which the requester is encouraged to evaluate the worker’s
performance honestly and the worker is incentivized to make
efforts to complete tasks.

1) Rating from the requester: We establish a three-tier
rating mechanism that allows the requester to express his
satisfaction degree (i.e., bad, normal, or good) to the worker
who finishes the assigned task. The three-tier degrees are
mapped to numerical values (i.e., bad: 0, normal: 1, good: 2)
for simplicity. Intuitively, when a worker gets a score of 0,
it means that the requester considers that the result submitted
by this worker is of low quality. On the contrary, a score of 2
indicates a high-quality result. Note that in the interaction
flow of BiCrowd, the requester needs to transfer the total
reward for a task to the platform before the task is allocated,
and the reward cannot be revoked. In addition, we assume
that the worker-selection process and the rating-process are
independent. In other words, requesters have no information
about workers and they only rate the received anonymous
results. Under these settings, the requester cannot decrease his
payment or increase his utility by submitting false ratings.

2) Reliability update for the worker: After a worker com-
pletes a task and gets a rating, the platform updates the
worker’s reliability by the following formula:

µi =

ni∑
k=1

rk/2

ni
, (1)

where ni is the total number of tasks completed by worker
i and it is also the number of ratings worker i has received,
rk ∈ {0, 1, 2} is one of the historical ratings that worker i
gets. A larger rk indicates a higher quality value. Note that
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rk is upper bounded by 2, hence dividing each rating rk by
2 normalizes the value of µi to the range [0, 1]. In this way,
the computed µi in Eqn. (1) can be used as a probability that
reflects worker i’s reliability. A reliability value closer to 1
indicates that the worker has a higher probability to generate
a high-quality sensing result.

C. Platform Utility

In BiCrowd, the platform aims to optimize two objectives,
i.e., the completion reliability and spatial diversity of sensing
tasks. We formally define these two objectives in the following.

1) Completion reliability: The completion reliability of a
task is based on the worker’s reliability defined above. Note
that not all workers are trustable, but their reliability can
reflect the probability of the worker completing a task with
high quality. Some workers may always take wrong photos or
unclear photos and their reliability values will be low. In such
cases, the goal of BiCrowd is to pursue that the sensing tasks
can be accomplished by the workers with high reliability.

Definition 1: (Completion Reliability) Given a sensing task
tj and its assigned set of workers Sj , the completion reliability
of tj is given by:

CRtj (Sj) = 1−
∏
∀i∈Sj

(1− µi),

where µi is the reliability of worker i defined in Eqn. (1).
µi denotes the probability that worker i can submit a high-

quality sensing result and it is computed by the platform.
Hence, the second half of the equation,

∏
∀i∈Sj (1 − µi),

is the probability that all of the workers in set Sj will
submit fake or low-quality sensing results. Namely, CRtj (Sj)
reflects the probability that task tj will obtain at least a high-
quality response. For tasks such as taking photos, if there
is no clear and correct photo, the requester cannot make a
correct judgment about the current situation. High completion
reliability heralds that the task will be done well with high
probability.

2) Spatial diversity: For tasks like taking photos of a
landmark for virtual tour or 3D model reconstruction, photos
from the same direction are redundant and of low value. The
requester needs photos from diverse spatial directions in order
to catch the overall picture of the target of interest. Thus, we
define the spatial diversity of tasks to evaluate the adequacy
of the selected workers.

Definition 2: (Spatial Diversity) Given a sensing task tj
and its assigned set of workers Sj , we draw n = |Sj | rays
from lj to the directions of these assigned workers. As shown
in Fig. 2, with the n rays, we can obtain n angles by imaging
a virtual ray rotating around lj from any given ray clockwise
for 2π. Each time the virtual ray overlaps with a neighboring
ray, an angle is determined. We denote the n angles as
a1, a2, ..., an, then

∑n
i=1 ai = 2π. The spatial diversity of

the sensing task tj is given by:

SDtj (Sj) = −
n∑
i=1

ai
2π

log
ai
2π
,

where log denotes the logarithm of base 2.

 lj l1

 l2

a1

 l3

an

 ln

a2

Fig. 2. Approach to space segmentation.

Note that, given the set of assigned workers for a sensing
task, the set of constructed angles in Definition 2 is invariant
to the labeling of workers. Similar to the definition of entropy,
SDtj (Sj) represents the diversity of the spatial distribution of
the set of selected workers, as demonstrated by the following
lemma.

Lemma 3.1: A larger value of SDtj (Sj) indicates that
the selected workers in Sj are more diversely distributed
around task tj .

Proof: Let us consider maximizing the value of
SDtj (Sj), which is equivalent to the following constrained
optimization problem:

max

n∑
i=1

− ai
2π

log
ai
2π
, s.t.

n∑
i=1

ai = 2π; ai ≥ 0,∀i.

Let I(xi) = xi log xi and xi = ai/2π. We simplify the above
optimization problem as

min

n∑
i=1

I(xi), s.t.
n∑
i=1

xi = 1;xi ≥ 0,∀i,

where I(xi) is convex as we have I ′′(xi) = 1
xi ln 2 > 0. The

sum of convex functions
∑n
i=1 I(xi) is also a convex function.

Namely, this problem is a convex optimization problem. To
prove the lemma, it is now equivalent to show that the min-
imum value of this convex optimization problem is obtained
at the point x1 = x2 = ... = xn = 1/n.

We use the Lagrange multiplier method to solve the prob-
lem. The Lagrange function is

L(x, λ) =

n∑
i=1

xi log xi + λ(

n∑
i=1

xi − 1)).

We take partial derivatives for each xi and get

∂L(x, λ)

∂xi
= log xi +

1

ln 2
+ λ = 0.

Then we have xi = 2−λ−1/ ln 2. As
∑n
i=1 xi = 1, we have

n∗2−λ−1/ ln 2 = 1 and thus xi = 1/n, i = 1, 2, ..., n. Since the
local minimum of the convex function is the global minimum,
when x1 = x2 = ... = xn = 1/n,

∑n
i=1 I(xi) achieves the

minimum value, log 1
n . In other words, when a1 = a2 = ... =

an = 2π/n, SDtj (Sj) achieves the maximum value, which
completes our proof.

Example 1: We give an intuitive example here to show that
SDtj can capture the diversity of locations for a given task tj .
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 l2

 l3

a3= π /4

 l4

a4= π 

a1 = π /2

a2 = π /4

(a)

 ljl1, l2 l3, l4

a2 = π 

a4 = π 

a1 = 0 a3 = 0

(b)

Fig. 3. A calculation example of spatial diversity.

Consider Fig. 3(a) where there is one task tj . Assume there
are four workers in the selected set Sj and a1 = π/2, a2 =
a3 = π/4, a4 = π. Then

SDtj (Sj) = −
1

4
log

1

4
− 2 ∗ 1

8
log

1

8
− 1

2
log

1

2
= 1.75.

If we consider Fig. 3(b), where two workers are in one spot
with respect to the task location and the other two workers are
in a diametrically opposite spot, we can obtain a1 = ∠l1lj l2 =
0, a2 = ∠l2lj l3 = π, a3 = ∠l3lj l4 = 0, a4 = ∠l4lj l1 = π.
Then the spatial diversity is

SDtj (Sj) = −2 ∗ 0 log 0− 2 ∗ 1
2
log

1

2
= 1.

It can be seen that a higher value of the spatial diversity
SDtj is obtained when workers are more diversely distributed
around the task.

3) Bi-objective optimization: Based on the aforementioned
definitions, we use V 1(S) = 1

m

∑m
j=1 CRtj (Sj) to denote

the average completion reliability of all tasks, and V 2(S) =∑m
j=1 SDtj (Sj) to denote the total spatial diversity of all

tasks, given the selected worker set S. Then, the goal of the
platform is to maximize V 1(S) and V 2(S) given the deadline
D and the budget B.

We prove that V 1(·) and V 2(·) are monotone submodular
functions, which are important for designing the incentive
mechanisms and proving the desirable properties.

Lemma 3.2: The two objective functions V 1(·) and
V 2(·) are monotone submodular functions.

Proof: Please refer to Appendix A.

D. Desirable Properties

In this work, our purpose is to design online incentive
mechanisms based on reverse auction to optimize the afore-
mentioned objectives. The designed mechanisms are expected
to satisfy as many of the following properties as possible.
• Computational Efficiency: An incentive mechanism is

computationally efficient if it gets the result in polynomial
time.

• Individual Rationality: A mechanism is individually
rational if the utility of each worker for performing tasks
is nonnegative.

• Budget Feasibility: If the sum of all the payments for
workers does not exceed the budget of the platform, we
call the mechanism budget feasible, i.e.,

∑
i∈S pi ≤ B.

• Truthfulness: A mechanism is truthful if reporting the
true cost is the dominant strategy for every worker, no
matter what other workers bid.

TABLE I
NOTATIONS

Symbol Description
W, n, i set of workers, number of workers, and one worker
T ,m, tj set of tasks, number of tasks, and one task
B,B′ budget, each time slot’s total budget
B′1, B

′
2 each time slot’s total budget for each objective function

D,D′, d deadline, each time slot’s end time and each time step
bi, ci, pi bid, cost, payment of worker i
µi, ri, li reliability, rating, location of worker i
ui,E[ui] utility, expected utility of worker i

S,S′,Sj
set selected workers, sample set of workers, set of task tj ’s
selected workers

S1,S2 set of selected workers of two optimization goals
V 1(S) average completion reliability over S
V 2(S) total spatial diversity over S
V 1
i (S) maximal marginal value of worker i over S w.r.t. V 1(·)
V 2
i (S) maximal marginal value of worker i over S w.r.t. V 2(·)
λ probability of choosing V 1(·) as the optimization goal
ρ∗1, ρ

∗
2 density threshold for two optimization goals

σ1, σ2 parameters used for computing the density threshold
κ parameter assumed on workers’ value

• Competitiveness: Given an objective function f , a mech-
anism is said to be α-competitive if it selects a worker
set S such that αf(S) ≥ f(S∗), where S∗ is the optimal
solution: the solution obtainable in the offline scenario
where the platform has full knowledge about workers’
bidding information.

IV. EXPECTED BI-OBJECTIVE TRUTHFUL INCENTIVE
MECHANISM

In existing incentive mechanisms for MCS, the common
strategy to select workers with one objective function is to
greedily select the worker who can bring the largest increment
of the objective function value. However, in BiCrowd, there
are two objectives for optimization. If we directly try to select
workers regarding the two objectives, it becomes difficult to
compare the workers because they can generate nondominant
function value increments. Therefore, we adopt a coin-flipping
strategy to select one objective function for worker evaluation
at each time step of the reverse auction. More specifically, we
flip a coin with a given probability λ ∈ [0, 1] to select V 1(·) as
the evaluation function for the workers; At the same time, we
have the probability (1− λ) to select V 2(·) as the evaluation
function.

Under this selection strategy, reasonable workers may try
to maximize their expected utility values when submitting
their bids. Specifically, based on the definition of the worker’s
utility, the expected utility of worker i can be defined as:

E[ui] = λu1i + (1− λ)u2i ,

where u1i and u2i are the utility values of worker i when he is
evaluated by V 1(·) and V 2(·), respectively.

To accommodate this kind of strategic behaviors, we design
the expected bi-objective truthful incentive mechanism (EpIM)
in the following.

A. Mechanism design
In an online reverse auction, to make informative decisions

on selecting workers, the platform usually adopts a sampling-
accepting strategy. Specifically, the platform observes a portion
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Algorithm 1 EpIM
Input: Budget constraint B, deadline D.
Output: Set of selected workers S and each worker’s pay-

ment.
1: (d,D′, B′,S ′,S)← (1, D

2blog2 Dc ,
B

2blog2 Dc , ∅, ∅);
2: (ρ∗1, ρ

∗
2, ω, β,S1,S2)← (α1, α2, 0, 0, ∅, ∅);

3: while d ≤ D do
4: Let 0 ≤ X ≤ 1 be a uniformly random value;
5: if X ≤ λ then
6: ω ← 1;β ← λ;
7: else
8: ω ← 2;β ← 1− λ;
9: end if

10: while there is a worker i arriving at time step d do
11: j ← argmaxtk∈T (V ω(Sk ∪ i)− V ω(Sk));
12: if bi ≤ V ωi (S)/ρ∗ω ≤ βB′ −

∑
k∈Sω pk then

13: pi ← V ωi (S)/ρ∗ω;
14: Sj ← Sj ∪ i;Sω ← Sω ∪ i;
15: else pi ← 0;
16: end if
17: S ′ ← S ′ ∪ i;
18: end while
19: if d = bD′c then
20: ρ∗1 ← getDensityThreshold(B′,S ′, 1);
21: ρ∗2 ← getDensityThreshold(B′,S ′, 2);
22: D′ ← 2D′; B′ ← 2B′;
23: end if
24: d← d+ 1;
25: end while

of the online arriving workers (sampling stage) and then make
informed decisions on the workers arriving later based on the
observation (accepting stage). Here we also apply this strategy
to design EpIM. The time interval is organized into multiple
stages: {1, 2, ..., blog2Dc, blog2Dc+1}. Each stage s ends at
time D′ = b2s−1D/2blog2Dcc and the budget for s is B′ =
b2s−1B/2blog2Dcc. Note that, as we allocate budget for each
stage, the workers arriving at each stage have chances to be
selected and paid by the platform under EpIM.

Algorithm 1 demonstrates the main procedure of EpIM.
At each time step d, we generate a random number X
for selecting the objective function at the current time step
(Line 4). If X ≤ λ, we set ω = 1, which means that we select
the objective function V 1(·) for worker evaluation; Otherwise,
we select V 2(·) as the objective function and we set ω = 2.
At the same time, we divide the budget at each time step into
two parts for each objective function according to the value
of λ (Lines 5-9).

At each time step, we scan arriving workers one by one. We
find the task that maximizes the marginal value for worker
i and calculate worker i’s maximal marginal value V ωi (S)
(the while-loop in Lines 10-18). According to the definitions
of V 1(·) and V 2(·), the maximal marginal value V 1

i (S) =

maxtj∈T
V 1(Sj∪i)−V 1(Sj)

m and V 2
i (S) = maxtj∈T V

2(Sj ∪
i)−V 2(Sj). If worker i’s maximal marginal density V ωi (S)/bi
is larger than or equal to the current density threshold ρ∗ω and

Algorithm 2 getDensityThreshold
Input: Stage budget B′, sample set S ′, selected objective

function V ω .
Output: ρ/σω .

1: F = {F1,F2, ...,Fm} ← {∅, ∅, ..., ∅};
2: i← argmaxk∈S′(V

ω
k (F)/bk);

3: j ← argmaxtk∈T (V ω(Fk ∪ i)− V ω(Fk));
4: while bi ≤ V ω

i (F)B′

V ω(F∪i) do
5: Fj ← Fj ∪ i;
6: i← argmaxk∈S′(V

ω
k (F)/bk);

7: j ← argmaxtk∈T (V ω(Fk ∪ i)− V ω(Fk));
8: end while
9: ρ← V ω(F)/B′;

the budget of this stage βB′ has not been exhausted, we select
him and give him a payment pi = V ωi (S)/ρ∗ω . If we choose
the objective function V 1(·), we add the selected worker to
S1, otherwise we add him to S2. Note that, at the beginning of
EpIM, we initially set two small density thresholds α1 = 0.5
and α2 = 0.5, which are used for making decisions at the first
stage. After observing and evaluating online arriving workers,
we add all of them to the sample set S ′, which is used
to calculate the more informative density threshold for the
following stages.

When a stage ends, namely d = bD′c, we update the
density threshold. As illustrated in Algorithm 2, we utilize
a proportional share allocation rule to calculate the density
threshold according to the sample set S ′ and the allocated
stage budget B′. The computation process adopts a greedy
strategy: the workers in S ′ are sorted based on their marginal
densities. We select the workers from the beginning of the
sorted worker sequence, and stop the selection process until
we find worker i and his subsequent worker i′, such that
bi ≤ V ω

i (F)B′

V ω(F∪i) and bi′ >
V ω
i′ (F)B′

V ω(F∪i′) . Note that the result of
F ∪ i is equivalent to {F1, ...,Fj ∪ i, ...,Fm}, since Fj is a
part of F and j represents the task that maximizes the marginal
value of worker i. Finally, the density threshold is set to be
V ω(F)
σωB′

, where σω > 1. The value of σω will influence the
competitive ratio of our algorithm and we will fix it later to
achieve a constant competitive ratio.

B. Mechanism Analysis

We show that EpIM satisfies computational efficiency, indi-
vidual rationality, budget feasibility, truthfulness, and constant
competitiveness in this section.

Lemma 4.1: EpIM is computationally efficient.
Proof: At each time step d, the while loop (Lines 10-

18) and the function getDensityThreshold are the two
parts with the highest computation complexity. At first, we
analyze the computational complexity of the while loop. For
j ← argmaxtk∈T (V ω(Sk ∪ i)− V ω(Sk)), finding the task
that maximizes the marginal value for worker i needs to match
the worker to each task and select the maximal value. Thus
this process is bounded by O(m). As the number of workers
arriving at the time step d must be less than the total number
of workers n, the process of worker selection and payment
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allocation has a computation complexity bounded by O(mn).
Next, we analyze the complexity of computing the density
threshold (Algorithm 2). Finding worker i with the highest
marginal threshold takes O(m|S ′|) and obviously |S ′| ≤ n,
thus this part is bounded by O(mn). Besides, there is no more
than S ′ winners, thus the computation complexity in the while
loop (Lines 4-8) is bounded by O(mn2). In conclusion, EpIM
satisfies computational efficiency.

Lemma 4.2: EpIM is individually rational.
Proof: From Line 13 in Algorithm 1, we can see that

if worker i is selected, pi ≥ bi; otherwise pi = 0. Thus the
utility of worker i is always nonnegative.

Lemma 4.3: EpIM is budget-feasible.
Proof: At each stage, we have a budget B′. From Line 12

in Algorithm 1, for the objective function V 1(·), we select a
worker only when λB′ has not been exhausted, and for V 2(·),
our cost cannot exceed (1− λ)B′. Thus, each stage is budget
feasible and the total payment will not exceed B.

Note that for a truthful mechanism, a worker cannot improve
his utility by submitting a bidding price deviating from his true
cost, no matter what bids the other workers submit. In our bi-
objective optimization problem, we have assumed that workers
try to maximize their expected utility when submitting their
bids. Thus we define the expected truthfulness considering the
bi-objective optimization model accordingly. Specifically, if
worker i reporting any bi 6= ci cannot improve his expected
utility, we call the mechanism is expectedly truthful.

Lemma 4.4: EpIM is expectedly truthful.
Proof: Consider worker i arriving at some stage, which

has the density thresholds ρ∗1 and ρ∗2. Without loss of gener-
ality, we set λ = 0.5. If there is no budget left when worker
i arrives, his bidding price does not have an influence on the
allocation result and thus cannot improve his utility. If there are
some budget for recruitment, we consider three cases regarding
the worker’s cost.

Case (a): ci ≤ V 1
i (S)/ρ∗1 and ci ≤ V 2

i (S)/ρ∗2. If the worker
reports bi = ci, his expected utility is E[ui] = 0.5(V 1

i (S)/ρ∗1−
ci) + 0.5(V 2

i (S)/ρ∗2 − ci). If he reports any cost between
ci and min{V 1

i (S)/ρ∗1, V 2
i (S)/ρ∗2} or reports any cost below

ci, his expected utility will not change because the payment
determination of EpIM does not depend on the worker’s
bid. Declaring a cost above min{V 1

i (S)/ρ∗1, V 2
i (S)/ρ∗2}, he

will lose the possibility of being selected by the correspond-
ing objective function and his expected utility is at most
0.5(max{V 1

i (S)/ρ∗1, V 2
i (S)/ρ∗2} − ci) < 0.5(V 1

i (S)/ρ∗1 +
V 2
i (S)/ρ∗2)−ci. Thus, there is no strategy better than reporting
bi = ci.

Case (b): V 1
i (S)/ρ∗1 ≤ ci ≤ V 2

i (S)/ρ∗2 or V 2
i (S)/ρ∗2 ≤

ci ≤ V 1
i (S)/ρ∗1. We only discuss the first case as the proof

is the same for the second case. Reporting any cost in
[V 1
i (S)/ρ∗1, V 2

i (S)/ρ∗2] will not make a difference considering
the worker’s expected utility E[ui] = 0(V 1

i (S)/ρ∗1 − ci) +
0.5(V 2

i (S)/ρ∗2 − ci). If the worker reports bi < V 1
i (S)/ρ∗1,

he can be selected by V 1(S) and his expected utility E[ui] =
0.5(V 1

i (S)/ρ∗1 − ci) + 0.5(V 2
i (S)/ρ∗2 − ci), where the com-

ponent V 1
i (S)/ρ∗1 − ci < 0. It can be seen that the value

of E[ui] decreases. On the other hand, if the worker reports
bi > V 2

i (S)/ρ∗2, he will not be selected and his expected

Algorithm 3 Proportional Share Mechanism (offline) [27]
Input: Budget constraint B, worker set W , task set T
Output: Set of selected workers S and each worker’s pay-

ment.
1: /*winner selection phase*/
2: S = {S1,S2, ...,Sm} ← {∅, ∅, ..., ∅};
3: i← argmaxk∈W(V 1

k (S)/bk);
4: j ← argmaxtk∈T (V 1(Sk ∪ i)− V 1(Sk));
5: while bi ≤ V 1

i (S)B
V 1(S∪i) do

6: Sj ← Sj ∪ i;
7: i← argmaxk∈W\S(V

1
k (S)/bk);

8: j ← argmaxtk∈T (V 1(Sk ∪ i)− V 1(Sk));
9: end while

10: /*payment determination phase*/
11: for i ∈ W do
12: pi ← 0;
13: end for
14: for i ∈ S do
15: W ′ ←W \ {i};
16: Q = {Q1,Q2, ...,Qm} ← {∅, ∅, ..., ∅};
17: ij ← argmaxj∈W′(V

1
j (Q)/bj);

18: ik ← argmaxtk∈T (V 1(Sk ∪ i)− V 1(Sk));
19: while bi ≤

V 1
ij
(Qj−1)B

V 1(Q) do
20: Qik ← Qik ∪ ij ;
21: pi ← max{pi,min{bi(j), ηi(j)}};
22: ij ← argmaxj∈W′\Q(V

1
j (Q)/bj);

23: ik ← argmaxtk∈T (V 1(Sk ∪ i)− V 1(Sk));
24: end while
25: end for

utility will be zero. Thus, in this case, reporting bi = ci is
a dominating strategy.

Case (c): ci > max {V 1
i (S)ρ∗1, V 2

i (S)ρ∗2}. In this case,
since V 1

i (S)ρ∗1 − c < 0 and V 2
i (S)ρ∗2 − c < 0, the worker’s

expected utility will always be negative and there is no chance
to improve the utility.

Combining cases (a), (b) and (c), we complete our proof.

Before proving the competitiveness of EpIM, we first in-
troduce an offline mechanism [27] sketched in Algorithm 3.
This mechanism includes the winner selection and payment
determination phases. The winner selection phase works as
Algorithm 2, and the payment determination phase adopts
the critical value strategy to ensure the truthfulness of the
mechanism. As this offline mechanism has been proved to
be O(1)-competitive, if we can prove that compared with
this mechanism, EpIM is O(1)-competitive, then EpIM has
a constant competitive ratio compared to the optimal solution.

Now we first consider the objective function V 1(·), which
is also used as the objective function of Algorithm 3 here.
Assume Q is the set of selected workers calculated by Algo-
rithm 3 and ρ1 = V 1(Q)/B is the density of Q. We use Q’s
subsets Q1 and Q2 denote the selected workers that appear
in the first and second half before the deadline, respectively.
When the blog2Dc-th stage is over, the workers who arrive
before time bD/2c are all in the sample set S′. Define Q′1
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as the set of selected workers calculated by Algorithm 2
according to the stage budget B/2 and the sample set S′.
The density of Q′1 is ρ′1 = 2V 1(Q′1)/B. The last stage’s
density threshold will be ρ∗1 = ρ′1/σ1. Define Q′2 as the
set of selected workers calculated by Algorithm 1 at the last
stage. Besides, we assume that each worker’s marginal value
is at most V 1(Q)/κ, in which κ is a parameter that will be
determined later.

We assume that all workers arrive in a random order and
their reliability values, spatial locations and arrival times are
i.i.d.. Namely, the workers have the same probability to be
selected in the set Q. Hence, we can get E[|Q1|] = E[|Q2|] =
|Q|/2. By the submodularity of V 1(·), we have E[V 1(Q1)] =
E[V 1(Q2)] ≥ E[V 1(Q)]/2. Because Q′1 is the set of selected
workers calculated optimally by Algorithm 2 with a stage bud-
get B/2, we then have E[V 1(Q′1)] ≥ E[V 1(Q1)] ≥ V 1(Q)/2
and E[ρ′1] = 2E[V 1(Q′1)]/B ≥ V 1(Q)/B ≥ ρ. Now, if
we can prove that the ratio of E[V 1(Q′1)] and E[V 1(Q′2)] is
a constant, then EpIM is O(1)-competitive compared to the
offline mechanism.

Lemma 4.5: Under the i.i.d. model, if κ is sufficiently
large, the ratio of E[V 1(Q′2)] to E[V 1(Q′1)] is at least a
constant. Specifically, this ratio approaches λ

2(1+λ) as κ→∞
and σ1 → 2(1 + λ).

To keep the fluency of the content, the proof of lemma 4.5
is given in Appendix B. Similarly, we can prove the following
lemma considering the objective function V 2(·).

Lemma 4.6: Under the i.i.d. model, for a sufficiently
large κ, the ratio of E[V 2(Q′2)] to E[V 2(Q′1)] is at least a
constant. Specifically, this ratio approaches 1−λ

2(2−λ) as κ→∞
and σ2 → 2(2− λ).

Based on the above analysis and Lemma 4.5 and Lem-
ma 4.6, we have completed proving that EpIM is constantly
competitive with respect to both objective functions.

Theorem 4.1: EpIM satisfies computational efficiency,
individual rationality, budget feasibility, expected truthfulness,
and constant competitiveness.

V. EXACT BI-OBJECTIVE TRUTHFUL INCENTIVE
MECHANISM

In this section, we study the scenario where workers have
ambitious bidding behaviors. As the MCS platform has two
objectives and the importance of the marginal value of a
worker for each objective is usually different, the aggressive
worker may try to manipulate his bidding price to pursue
a higher payment, assuming that he can be selected by the
objective which gives him a higher evaluation value. We use
the following example to discuss this issue if EpIM is applied:

Example 2: Consider that the platform has density thresh-
olds ρ∗1 = 0.75 and ρ∗2 = 0.5 at the current stage. Given the
arriving worker i, we assume that V 1

i (S) = V 2
i (S) = 1 and

bi = ci = 1. By the time the platform evaluates the worker,
if X ≤ λ, we select V 1(·) for worker evaluation. Because
V 1
i (S)/ρ∗1 = 1.333 > bi, he will be selected and his payment

will be 1.333 and the utility will be ui = 0.333. If bi > 1.333,
he will be refused. In this case, the platform remains truthful.
However, the platform now also has the probability of choosing

Algorithm 4 EaIM
Input: Budget constraint B, deadline D.
Output: Set of selected workers S and each worker’s pay-

ment.
1: (d,D′, B′,S ′,S)← (1, D

2blog2 Dc ,
B

2blog2 Dc , ∅, ∅);
2: (ρ∗1, ρ

∗
2, ω)← (α, α, 0);

3: while d ≤ D do
4: Let 0 ≤ X ≤ 1 be a uniformly random value;
5: if X ≤ λ then
6: ω ← 1;
7: else
8: ω ← 2;
9: end if

10: while there is a worker i arriving at time step d do
11: j ← argmaxtk∈T (V ω(Sk ∪ i)− V ω(Sk));
12: if bi ≤ max {V

1
i (S)
ρ∗1

,
V 2
i (S)
ρ∗2
} ≤ B′−

∑
k∈S pk then

13: pi ← max {V
1
i (S)
ρ∗1

,
V 2
i (S)
ρ∗2
};

14: Sj ← Sj ∪ i;
15: else pi ← 0;
16: end if
17: S ′ ← S ′ ∪ i;
18: end while
19: if d = bD′c then
20: ρ∗1 ← getDensityThreshold(B′,S ′, 1);
21: ρ∗2 ← getDensityThreshold(B′,S ′, 2);
22: D′ ← 2D′; B′ ← 2B′;
23: end if
24: d← d+ 1;
25: end while

V 2(·) for worker evaluation, in this case, the worker will also
be selected and given a payment 2 and the utility will be
improved to 1. Thus, pi = 1.333 is not a critical value, and
reporting 1.333 < bi < 2 will improve the worker’s utility
with the probability (1− λ).

To accommodate this issue, we design the exact bi-objective
truthful incentive mechanism (EaIM) here to guarantee the
exact truthfulness with respect to the bi-objective platform.
In other words, the mechanism ensures that the worker does
not have any chance to improve his payment by submitting a
bidding price deviating from his true cost.

A. Mechanism Design

In order to hold the desirable properties, we continue using
the algorithm framework of EpIM. Meanwhile, in order to
guarantee the property of exact truthfulness, we need to modify
EpIM based on the following principle: the payment for each
selected worker should be a critical value no matter which
objective function is adopted to evaluate the worker.

EaIM is described in Algorithm 4. At the beginning of the
mechanism, we take a random number X and set the value of
ω similar to Algorithm 1. If X ≤ λ, we select the objective
function V 1(·) for worker evaluation and set ω = 1, otherwise
we select the objective function V 2(·) and set ω = 2. Then,
we scan arriving workers one by one. If the worker’s marginal
density on any of the objective functions (V 1(·) or V 2(·))
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is greater than or equal to the threshold, he will be selected
and given a payment pi = max {V

1
i (S)
ρ∗1

,
V 2
i (S)
ρ∗2
}, which is the

largest payment he can get. At the same time, we add the
selected worker into the corresponding set Sj . At the end
of EaIM, we calculate the density threshold using the same
procedure in Algorithm 1.

Now we consider Example 2 again by running EaIM. If
worker i reports bi = ci = 1, regardless of whether he is
selected by V 1(·) or V 2(·), he will receive a payment pi = 2
and the utility is ui = 2 − 1 = 1. If the worker reports a
bid larger than 2, he will not be selected by either objective
function. If the worker reports bi = 1.5, his utility is also
ui = 2 − 1 = 1 since 1.5 < max {1.333, 2}. The worker
cannot improve his utility by reporting a fake cost.

B. Mechanism Analysis

In this section, we prove that EaIM satisfies computational
efficiency, individual rationality, budget feasibility, and exact
truthfulness.

Lemma 5.1: EaIM is computationally efficient.
Proof: In Line 12 of EaIM, for all the workers arriving at

time step d, we need to calculate max {V
1
i (S)
ρ∗1

,
V 2
i (S)
ρ∗2
}, which

is bounded by O(mn). The other parts in EaIM is consistent
with EpIM, and thus EaIM is also bounded by O(mn2).

Lemma 5.2: EaIM is individually rational.
Proof: From Line 13 in Algorithm 4, it can be seen

that if worker i is selected, he will get a payment pi =

max {V
1
i (S)
ρ∗1

,
V 2
i (S)
ρ∗2
}, otherwise pi = 0. The utility of worker

i is

ui =

{
max {V

1
i (S)
ρ∗1

,
V 2
i (S)
ρ∗2
} − ci, i ∈ S,

0, otherwise.

As max {V
1
i (S)
ρ∗1

,
V 2
i (S)
ρ∗2
} ≥ bi, in this case, we have ui ≥ 0.

Therefore, the proposed mechanism is individually rational.
Lemma 5.3: EaIM is budget feasible.
Proof: Although the process of allocating payments has

changed compared to EpIM, selecting a worker is always
under the condition B′ −

∑
k∈S pk, which means that we

cannot exceed the stage budget. Thus, the whole process is
budget feasible.

Lemma 5.4: EaIM is exact truthful.
Proof: Consider worker i with bid bi and true cost ci. We

show that at time step d, reporting the true cost is a dominant
strategy for worker i by discussing the following cases.

Case (a): If the budget has been exhausted when the worker
arrives, no matter how much he bids, the platform will not
choose him, so he has no way to improve his earnings. In
other cases, we assume ci ≤ B′ −

∑
k∈S pk.

Case (b): Consider ci ≤ max {V
1
i (S)
ρ∗1

,
V 2
i (S)
ρ∗2
}. Worker i

will be chosen no matter which objective function is used
and his payment is always max {V

1
i (S)
ρ∗1

,
V 2
i (S)
ρ∗2
}. His utility

will be ui = max {V
1
i (S)
ρ∗1

,
V 2
i (S)
ρ∗2
} − ci. Reporting any bid

bi ≤ max {V
1
i (S)
ρ∗1

,
V 2
i (S)
ρ∗2
} will not make a difference to his

utility. Besides, any bid bi ≥ max {V
1
i (S)
ρ∗1

,
V 2
i (S)
ρ∗2
} will let him

lose the auction and the utility will drop to 0.

Case (c): Consider ci > max {V
1
i (S)
ρ∗1

,
V 2
i (S)
ρ∗2
}. In this case a

truthful bidder has bi > max {V
1
i (S)
ρ∗1

,
V 2
i (S)
ρ∗2
}, and the worker

will not be selected. The worker can report a lower bid such
that he will be selected and get a payment. If he reports a bid
bi ≤ max {V

1
i (S)
ρ∗1

,
V 2
i (S)
ρ∗2
}. His utility at time step d is ui =

max {V
1
i (S)
ρ∗1

,
V 2
i (S)
ρ∗2
}− ci. Because ci > max {V

1
i (S)
ρ∗1

,
V 2
i (S)
ρ∗2
},

his utility becomes negative.
In summary, reporting a fake cost cannot improve the

worker’s utility.
Theorem 5.1: EaIM satisfies computational efficiency,

individual rationality, budget feasibility, and exact truthfulness.

VI. EXPERIMENT

In this section, we evaluate the performance of EpIM and
EaIM with three benchmarks concerning the two optimization
goals. The first benchmark is the single objective online
mechanism (SOM) proposed in [8]. The second benchmark
is the offline incentive mechanism (OIM) introduced in Al-
gorithm 3, which has full knowledge of workers’ bidding
information and thus is used as an upper bound for the online
incentive mechanisms. The last benchmark is the random
selection mechanism (RAND). RAND simply selects workers
based on a fixed density threshold and is used as a lower
bound. We implement the above mechanisms by using V 1(·)
and V 2(·) as the objective functions, respectively, generating
six implementations: SOM-CR, SOM-SD, OIM-CR, OIM-SD,
RAND-CR, and RAND-SD.

A. Experimental Setup

We conduct experiments with both synthetic and real
datasets. For the synthetic data, we generate locations of
workers and tasks in a 2D space [0, 5000]2. We generate 100
tasks (m=100) in total, setting the deadline D = 1000s and
varying the budget B from 0 to 500. The worker’s arrival time
satisfies the uniform distribution and we vary the number of
workers from 200 to 800 with an increment of 200. Each
worker is placed at a random location when he arrives. Each
worker’s cost is uniformly distributed between [1, 10]. As we
have proved earlier, when σ1 → 2(1+λ), σ2 → 2(2−λ) and
κ is sufficiently large, EpIM is O(1)-competitive. Note that
κ increases with the number of arriving workers, thus we set
an initial σ1 = σ2 = 1, and then change them to 2(1 + λ)
and 2(2−λ) respectively once the number of arrived workers
becomes larger than a specified threshold. In our simulation,
we set this threshold to 100 for the objective function V 1(·)
and 300 for the objective function V 2(·). For the random
mechanism, the density threshold is chosen randomly from
[0, 1]. When the worker arrives, we will randomly match a
task for him and calculate the marginal value of the worker
based on the result of the match.

We also use the real-world dataset T-Drive [23] in the exper-
iment. T-Drive contains the GPS trajectories of 10,357 taxis
during the period from Feb. 2 to Feb. 8, 2008, within Beijing,
China. We randomly select 1000 trajectories in the experiment.
By clustering the position coordinates of these trajectories into
25 categories, we obtain 25 center points of clusters. The
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Fig. 4. Impact of budget on the synthetic dataset (n=2000). (a) Average completion reliability. (b) Total spatial diversity.
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Fig. 5. Impact of budget on the real dataset (n=800). (a) Average completion reliability. (b) Total spatial diversity.

position coordinates of these center points are used to initialize
the positions of tasks. Then, we vary the number of trajectories
used in the experiment from 50 to 150 and extract the position
of a worker from each trajectory. Besides, we vary the budget
from 50 to 200 with an increment of 50 to study the impact
of the budget. We also set σ1 = σ2 = 1 initially, and then
change them to 2(1 + λ) and 2(2− λ) when the numbers of
arrived workers reach the threshold values of 25 and 75 for
the objective functions V 1(·) and V 2(·), respectively. For the
other parameters, we follow the same settings as the synthetic
dataset.

B. Experimental result

1) Impact of the budget B: Fig. 4 and Fig. 5 show the
performance comparison regarding the average completion
reliability and the total spatial diversity for all compared
mechanisms in the synthetic and real datasets, respectively.

From Fig. 4 and Fig. 5 we can observe that the platform
obtains higher values of both objective functions when the
budget increases. OIMs operate in the offline scenario, where
the information of all workers is known a priori. Therefore,
OIMs always outperform the other algorithms regarding the
corresponding objective function. For EpIM and EaIM, in the
synthetic dataset, when the budget is 100, the gap between
our mechanisms and the upper bound mechanisms OIMs is
the largest. Even so, the biggest competitive ratio is just 2.487
in Fig. 4(a) and 4.228 in Fig. 4(b). In the real dataset, when the
budget is 50, the biggest competitive ratio is 1.275 in Fig. 5(a)

and 5.294 in Fig. 5(b). As the budget grows, the competitive
ratio gets smaller. When B = 500, the competitive ratio is
1.042 in Fig. 4(a) and 1.593 in Fig. 4(b). When B = 200, the
competitive ratio is 1.053 in Fig. 5(a) and 1.749 in Fig. 5(b).

Among the compared online algorithms, it can be seen that
the proposed mechanisms (EpIM and EaIM) and the single
objective mechanisms (SOM-CR and SOM-SD) perform better
than RANDs. As SOM-CR and SOM-SD only optimize one
objective, their curves of the two objective functions exhibit a
large deviation. Considering the average completion reliability,
SOM-CR achieves high performance because it is designed
to optimize the completion reliability. The proposed EpIM
and EaIM perform closely to SOM-CR when the budget is
sufficient as depicted in Fig. 4(a). As comparison, SOM-SD
performs poorly compared to EpIM, EaIM, and SOM-CR. On
the other hand, when considering the spatial diversity, SOM-
SD performs well since it is designed to optimize this value.
Again, the proposed EpIM and EaIM have comparable per-
formance with SOM-SD. SOM-CR, as comparison, performs
only slightly better than RAND-SD as shown in Fig. 4(b). In
summary, the proposed EpIM and EaIM have a competitive
performance on both objective functions simultaneously, while
SOM-CR and SOM-SD can only perform well on one objec-
tive, which shows the superiority of the proposed mechanisms
for the bi-objective sensing scenarios.

2) Impact of the number of workers n: Fig. 6 and Fig. 7
show the performance comparison when we vary the number
of workers n. We can observe that when the number of
workers increases, the platform gets a higher value of the two
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Fig. 6. Impact of n on the synthetic dataset (B=1000). (a) Average completion reliability. (b) Total spatial diversity.
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Fig. 7. Impact of n on the real dataset (B=1500). (a) Average completion reliability. (b) Total spatial diversity.

objective functions. The gap between EpIM, EaIM and the
offline mechanisms OIMs is the largest when the value of n is
small. In Fig. 6(a) and Fig. 6(b), the biggest competitive ratios
are 1.435 and 1.635 when n = 200, respectively. In Fig. 7(a)
and Fig. 7(b), the biggest competitive ratios are 1.745 and
2.945 when n = 50, respectively. As the number of workers
grows, the performance of our proposed mechanisms gets
closer to the offline algorithms. In Fig. 6(a) and Fig. 6(b), the
competitive ratios reduce to 1.105 and 1.375 when n = 800,
respectively. When n = 150, the competitive ratios reduce to
1.0827 and 1.408 in Fig. 7(a) and Fig. 7(b), respectively.

Among the compared online algorithms, it can be seen
that the performance of RANDs is the worst. When the
optimization goal is V 1(·), SOM-CR achieves a slightly bet-
ter performance than the proposed mechanisms (EpIM and
EaIM) while SOM-SD performs poorly. On the other hand,
when the optimization goal is V 2(·), SOM-SD performs well
while SOM-CR performs only slightly better than RAND-
SD. Again, the results show the superiority of the proposed
mechanisms considering the bi-objective sensing tasks.

3) Truthfulness: Fig. 8 shows the truthfulness of EpIM and
EaIM. We randomly select two workers (ID = 50 and ID =
117) and allow them to submit bids that are not equal to their
actual costs. As can be seen, in Fig. 8(a), worker 50 achieves
his maximal utility if he bids truthfully (b50 = c50 = 4).
In Fig. 8(b), worker 117 achieves his maximal utility if he
bids truthfully (b117 = c117 = 8). Fig. 8(c)-(d) show the
truthfulness of EaIM. Similarly, we select two workers (ID
= 128 and ID = 104) randomly and allow them to submit fake

bids. It can be seen that these two workers also achieve the
maximal utility when they bid truthfully (b128 = c128 = 8 and
b104 = c104 = 2).

VII. CONCLUSION

In this paper, we have designed two online incentive mech-
anisms for MCS systems with two optimization goals. First,
we proposed the BiCrowd framework where the objectives
of completion reliability and spatial diversity are formulated.
Then we designed two effective incentive mechanisms based
on the online reverse auction. We have shown that the proposed
mechanisms satisfy many desirable properties, including com-
putational efficiency, budget feasibility, individual rationality,
truthfulness, and good competitiveness. We have evaluated the
performance of the proposed mechanisms based on both syn-
thetic and real-world datasets. The experimental results have
shown the superiority of the proposed mechanisms considering
the two objectives simultaneously.

APPENDIX

A. proof of lemma 3.2

We transform V 1(·) to a representation based on pairwise
elements. Consider a worker-task pair (i, j), which represents
that worker i is assigned to task tj . The ground set E is the
set of all possible pairs, i.e., E = {(i, j)|i ∈ [n], j ∈ [m]},
where [n] and [m] are the worker set of size n and the task
set of size m, respectively. Since each selected worker i ∈ S
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Fig. 8. Truthfulness. (a)-(b) Truthfulness of EpIM. (c)-(d) Truthfulness of EaIM.

in our problem is assigned to a task tj , V 1(·) is equivalent to
the following function:

f(A) = 1

m

∑
j∈Am

(1−
∏
i∈Aj

n

(1− µi)), (2)

where A ⊆ E , An = {i|(i, j) ∈ A}, Am = {j|(i, j) ∈ A},
and Ajn represents the set of workers assigned to task tj . In
this formulation, An, Am, and Ajn are mapped to S, T , and
Sj in our problem. As f(A) has been proved to be monotone
submodular in [28], V 1(S) is also monotone submodular.

As SDtj (·) has been proved to be monotone submodu-
lar [24] and each worker can be assigned to only one task,
the summation of SDtj (·) for all worker-task pairs preserves
the monotone submodularity [29], i.e. V 2(·) is monotone
submodular.

B. proof of lemma 4.5

To prove this lemma, we consider two cases with regard
to the total payment paid for the selected workers at the last
stage.

Case (a): At the last stage, the total payment given to the
workers selected by V 1(·) is at least αB (α ∈ (0, λ/2]),
namely

∑|Q′2|
i=1 bi ≥ αB. In this case, because each selected

worker has a marginal density not less than ρ∗1, we have
V 1
i (Q′2,(i−1)) ≥ biρ

∗
1, where Q′2,(i−1) denotes the workers

who had been selected to Q′2 before worker i. Note that the
sum of the marginal values of all workers in Q′2 is the value
of Q′2. Thus, we sum up the marginal values of all workers in
Q′2 and get

|Q′2|∑
i=1

V 1
i (Q′2,(i−1)) = V 1(Q′2) ≥ ρ∗1

|Q′2|∑
i=1

bi ≥ ρ∗1αB.

For ρ∗1 = ρ′1/σ1 and ρ′1 = 2V 1(Q′1)/B, we have

V 1(Q′2) ≥
2αV 1(Q′1)

σ1
.

Case (b): At the last stage, the total payment given to the
workers selected by V 1(·) is less than αB (α ∈ (0, λ/2]).

There are three reasons causing that the workers from Q2

are not selected in Q′2. The first reason is that some portion
of budget is exhausted by the objective function V 2(·). This
portion of budget is less than B(1−λ)

2 , then the total loss due
to the missed budget is at most

ρ∗1
B(1− λ)

2
=
V 1(Q′1)(1− λ)

σ1
.

The second case is that, some workers from Q2 have marginal
densities less than ρ∗1, hence they will not be selected to Q′2.
The worst case is that these workers are all in Q2, and even if
this happens, the maximum expected total payment for these
workers will not exceed Bλ

2 . Thus the expected total loss
caused by these missed workers is less than

ρ∗1Bλ

2
=
V 1(Q′1)λ

σ1
.

The last case is that for some workers with a marginal density
larger than or equal to ρ∗1, we have no budget to hire him,
which means that such a worker’s payment is larger than
(λ/2 − α)B and

V 1
i (Q′2,(i−1))

(λ/2−α)B ≥ ρ∗1. Otherwise the payment
will not exceed the stage budget Bλ/2 even if we select that
worker. Thus, for such a worker i in Q2, we have:

V 1
i (Q′2,(i−1)) ≥ ρ

∗
1(
λ

2
− α)B.

As ρ∗1 = ρ′1/σ1 and E[ρ′1] ≥ ρ1, we have

V 1
i (Q′2,(i−1)) ≥

(λ− 2α)ρ1B

2σ1
.

Because the stage budget for V 1(·) is at most Bλ/2, there
cannot be more than b σ1λ

λ−2αc such workers in Q2. We have
assumed that the marginal value of each worker is at most
V 1(Q)/κ, thus the total loss here is less than

b σ1λ

λ− 2α
cV

1(Q)
κ

.

Combining the above three losses, we get the gap between
E[V 1(Q′2)] and E[V 1(Q2)], which satisfies the following
relationship:

E[V 1(Q2)]−E[V 1(Q′2)] ≤
V 1(Q′1)(1− λ)

σ1
+
V 1(Q′1)λ

σ1
+ b σ1λ

λ− 2α
cV

1(Q)
κ

,

E[V 1(Q′2)] ≥E[V 1(Q2)]−
V 1(Q′1)(1− λ)

σ1
− V 1(Q′1)λ

σ1
− V 1(Q)

κ
b σ1λ

λ− 2α
c.

Since E[V 1(Q2)] ≥ E[V 1(Q)]/2 and E[V 1(Q)] ≥
E[V 1(Q′1)], we have

E[V 1(Q′2)] ≥
E[V 1(Q′1)]

2
− E[V 1(Q′1)](1− λ)

σ1

−E[V 1(Q′1)]λ
σ1

− E[V 1(Q′1)]
κ

b σ1λ

λ− 2α
c.
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The ratio for E[V 1(Q′2)] to E[V 1(Q′1)] is

1

2
− 1

σ1
− 1

κ
b σ1λ

λ− 2α
c(α ∈ (0, λ/2]).

Considering both cases (a) and (b), our objective is to
maximize 1

2 −
1
σ1
− 1

κb
σ1λ
λ−2αc or 2α

σ1
subject to

1

2
− 1

σ1
− 1

κ
b σ1λ

λ− 2α
c = 2α

σ1
.

We can see that b σ1λ
λ−2αc is an integer larger than zero. Thus,

a sufficiently large κ is preferred. For 2α
σ1

, when α = λ/2,
it gets the maximum value. However, 1

2 −
1
σ1
− 1

κb
σ1λ
λ−2αc is

undefined when α = λ/2. Thus, we calculate the limit of both
sides of the equation when κ→∞ and α→ λ/2 and have:

lim
κ→∞
α→λ/2

1

2
− 1

σ1
− 1

κ
b σ1λ

λ− 2α
c = 1

2
− 1

σ1
,

lim
κ→∞
α→λ/2

2α

σ1
=

λ

σ1
.

Combining these two equations, we have σ1 = 2(1 + λ).
Specifically, the ratio approaches λ

2(1+λ) as κ → ∞ and
α→ λ/2.
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